
HP TRIM

Software Version: 7.1

Web Service Reference Manual

Document Release Date: July 2011

Software Release Date: July 2011

Legal Notices

Warranty

The only warranties for HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

Copyright Notices

© Copyright 2008-2011 Hewlett-Packard Development Company, L.P.

Trademark Notices

Microsoft®, Windows®, Windows® XP and Windows Vista® are U.S. registered trademarks of Microsoft
Corporation.

Documentation Updates

The title page of this document contains the following identifying information:

 Software Version number, which indicates the software version.

 Document Release Date, which changes each time the document is updated.

 Software Release Date, which indicates the release date of this version of the software.

To check for recent updates or to verify that you are using the most recent edition of a document, go to:

http://h20230.www2.hp.com/selfsolve/manuals

This site requires that you register for an HP Passport and sign-in. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

Or click the New users - please register link on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service.
Contact your HP sales representative for details.

http://h20230.www2.hp.com/selfsolve/manuals
http://h20229.www2.hp.com/passport-registration.html

Support

Visit the HP Software Support Web site at:

http://www.hp.com/go/hpsoftwaresupport

This Web site provides contact information and details about the products, services, and support that HP
Software offers.

HP Software online support provides customer self-solve capabilities. It provides a fast and efficient way to
access interactive technical support tools needed to manage your business. As a valued support customer, you
can benefit by using the support Web site to:

 Search for knowledge documents of interest

 Submit and track support cases and enhancement requests

 Download software patches

 Manage support contracts

 Look up HP support contacts

 Review information about available services

 Enter into discussions with other software customers

 Research and register for software training

Most of the support areas require that you register as an HP Passport user and sign in. Many also require a
support contract. To register for an HP Passport ID, go to:

http://h20229.www2.hp.com/passport-registration.html

To find more information about access levels, go to:

http://h20230.www2.hp.com/new_access_levels.jsp

http://www.hp.com/go/hpsoftwaresupport
http://h20229.www2.hp.com/passport-registration.html
http://h20230.www2.hp.com/new_access_levels.jsp

Contents

1 Which SDK?..10

Introduction .. 10

SDK versions .. 10

COM SDK... 10

.NET SDK... 10

Making the selection.. 10

Conclusion... 11

2 Installation ...12

Introduction .. 12

Method .. 12

Prerequisites... 12

Installation process .. 13

Manual deployment... 17
Deploying the HP TRIM Web Service manually... 17

Folder access .. 18

The configuration file .. 19

Conclusion... 20

3 Developing..21

Getting started ... 21

IDEs .. 21

Creating a reference to the HP TRIM Web Service ... 22

4 Basic searching ... 24

Introduction ..24

The RecordSearch operation..24

About clauses ..25

Getting results..27

The Fetch operation...27

Obtaining results using the TrimResponse ...29
The SuccessResult ...30
The ErrorResult...30
The FetchResult ..31
The EndResponse ..31

ListProperties...31

Other SpecificationProperty properties..32

Conclusion...32

5 Primary operations... 34

Introduction ..34

IsForUpdate..34

SpecificationProperty children ..35

InputProperties ..36

Modifying objects..36

Modifying metadata with the Update operation ...36

Will it save? Verifying records...38

Additional Fields ..38

Create..39

Create.Items...39

Errors ..39

Delete ..40

Dates ...40

Conclusion...41

6 Child Lists ... 42

Introduction ..42

Child objects..42

Changing just one child list item ..45

Creating a child list item ...46

Conclusion...46

7 Record operations ..47

Introduction .. 47

AddRendition.. 47

AppendNotes .. 48

AttachKeyword... 48

CheckInMailMessage... 49

CompleteCurrentAction... 49

CreateCopy ... 50

DeleteRendition.. 50

Finalize ... 51

Conclusion... 51

8 Non-Record Operations ..52

Introduction .. 52

Access Control .. 52

HasAccess... 52

RemoveAccess .. 52

AppendAccess... 52

Deleting an object... 53

Information about the HP TRIM dataset and current connection ... 53

ConnectionInfo... 53

IsLicensed... 53

UserLabels ... 54

ApplyUserLabel ... 54

RemoveFromUserLabel... 54

Conclusion... 54

9 CheckIn and CheckOut ...55

Introduction .. 55

Web Service Enhancements 3 ... 55

Prerequisites .. 55
Downloading.. 57
Uploading... 59

Conclusion... 61

10Advanced searching .. 62

Introduction ..62

Record Location searches...62

Boolean searching ..63

Logical clauses ...63

AND clause...64

OR clause..65

NOT clauses ...66

Boolean search format ...66

Building a Boolean search...67

Multiple Boolean conditions..67

Conclusion...68

11Injection.. 69

Introduction ..69

URI injection...69

Dealing with injected URIs ...70

Things to remember...71

Name ...71

Conclusion...71

12Shortcut Operations ... 72

Introduction ..72

Records..72

ShortcutRecordNumber...72

ShortcutRecordTitle...73

ShortcutRecordUri...73

ShortcutRecordUris ...74

ShortcutRecordDateRegistered...74

Locations ...74

ShortcutLocationName..75

Conclusion...75

13XML methods... 76

Introduction ..76

ExecuteXml() and ConvertToXml() ...76

Conclusion...78

14Debugging and error logs ...79

Introduction .. 79

Debugging... 79

Logging.. 79

Conclusion... 80

A Contacting HP TRIM API Support ..81

API Support .. 81

The List Serve .. 81

HP TRIM Helpdesk.. 81

Web Service Reference Manual

Page 10 of 81

1 Which SDK?

Introduction

The HP TRIM Web Service is for customers who need to provide access to HP TRIM using
HTTP through port 80.

After installation, you start your own development work based on the HP TRIM Web Service
using the HP TRIM Software Development Kit (SDK).

This chapter clarifies information about SDK versions and helps you decide on a version of the
HP TRIM SDK before starting development work.

SDK versions

Versions of the HP TRIM SDK currently available are the COM SDK and the .NET SDK:

COM SDK

This is the legacy HP TRIM SDK and is the only one which has been available for the entire
life of HP TRIM 5 and 6.

There is a significant amount of code developed using this SDK version, both internally within
HP and with external customers. This SDK makes a series of COM objects available to COM
capable platforms and languages – in other words, Microsoft Windows centric development
environments.

For development work against TRIM 5 or 6, you should still use the COM SDK

However, with the arrival of HP TRIM 7, HP Software will not develop the COM SDK any
further.

.NET SDK

This is the new HP TRIM 7 SDK option.

You should use it for new development work against HP TRIM 7 or later.

Making the selection

What HP TRIM SDK version is right for a given task? The following points will guide you
through the decision making process.

Web Service Reference Manual

Page 11 of 81

You have existing code using the HP TRIM COM SDK

HP will continue to support the COM SDK. Therefore, old code will not break; however, all
new code should be written against the .NET SDK.

Not all new HP TRIM features will support the COM SDK; therefore, in some cases, you have
to rewrite COM SDK code to use the .NET SDK.

You are using a language which cannot access .NET but can access COM objects and HP TRIM is

installed on the same computer as the application will run on

Use the COM SDK version. The COM SDK provides a richer more interactive interface than
the Web Service and performs well when installed on the same computer as the SDK
application.

You are writing new code with a .NET language and have HP TRIM installed on the same computer

as your application will run on

Use the .NET SDK.

You are using a language which supports Web Services based on HTTP, SOAP and XML and your

application will run on a computer without HP TRIM installed on it

Use the HP TRIM Web Service, as it is optimized for remote network use.

You are using a language which does not support COM or .NET, but which is capable of using

Web Services based on HTTP, SOAP, and XML

Use the HP TRIM Web Service.

Your language does not support COM, .NET or Web Services

Unfortunately, your chosen language is not capable of using the HP TRIM SDK.

Conclusion

Hopefully, this chapter has helped you decide which HP TRIM SDK is right for you. The rest
of this document assumes that you make a decision to use the HP TRIM Web Service and
documents how to use the Web Service provided by the toolkit.

Web Service Reference Manual

Page 12 of 81

2 Installation

Introduction

This chapter discusses the installation and configuration of the HP TRIM Web Service.
It starts by discussing how to run the MSI installer and the supported platform for the HP
TRIM Web Service. It then discusses manual deployment of the HP TRIM Web Service, before
finishing up with answers to commonly asked questions.

Method

The default installation method installation for the HP TRIM Web Service is to use the MSI
installation file provided by HP Software.

Prerequisites

See TRIM7.1_Spec.pdf for detailed requirements for the HP TRIM Web Service.

If the computer you are using has never run an ASP.NET v2 application, you may have to
allow ASP.NET v2.0.50727 Web Service Extensions:

1 Open Computer Management

2 Expand Internet Information Services (IIS) Manager

3 Select Web Service Extensions

4 If the ASP. NET v2.0.50727 status is not set to Allowed, right-click it and select Allow.

Web Service Reference Manual

Page 13 of 81

Installation process

1 Run the MSI installation file HPTRM_WebService_xNN.msi.

The Welcome screen appears:

2 Click Next.

The License Agreement dialog box appears:

3 Select I accept the license agreement for the installer to continue and click Next.

The Destination Folder dialog box appears:

Web Service Reference Manual

Page 14 of 81

4 Click Browse to change the installation folder.

The folder specified here is generally the location of the HP TRIM installation.
This location will be used as the parent directory for the virtual directory that the HP
TRIM Web Service installer will create.
This virtual directory is configured within Microsoft IIS and is where the HP TRIM Web
Service binaries reside.

Web Service Reference Manual

Page 15 of 81

5 In the Destination Folder screen, click Next.

The Existing Web Sites on this Server dialog appears:

6 Select the Web site to install to and click Next.

The HP TRIM Web Service Configuration dialog box appears:

7 Type the details of the HP TRIM dataset that you want the HP TRIM Web Service to use.

The HP TRIM Web Service can only expose one dataset at a time.
If you want to support more than one HP TRIM dataset through the HP TRIM Web
Service, then you need to install two copies of the HP TRIM Web Service using the manual
deployment technique discussed later in this chapter.

8 Click Next.

The Ready to Install the Application dialog box appears:

Web Service Reference Manual

Page 16 of 81

It displays the results of the prerequisites check.

The installer is now ready to run.

9 In the Ready to Install the Application screen, click Next.

When complete, the HP TRIM Web Service has been successfully installed dialog box
appears:

Web Service Reference Manual

Page 17 of 81

Manual deployment

It is possible to deploy the HP TRIM Web Service without running the MSI installation file.

This is useful when the HP TRIM Web Service is already installed on a computer and you
want to run a second instance of the toolkit on that computer, perhaps pointing to a different
HP TRIM dataset.
It is also useful for deploying the HP TRIM Web Service to a large number of computers in a
clustered Web environment.
The HP TRIM Web Service runs inside a virtual directory managed by Microsoft’s IIS. This
virtual directory needs to have some specific permissions configured, which are usually set by
the .msi installation file.

Note

In IIS 7, an IIS application, not virtual directory, is required.
For simplicity, this document will sometimes use the term
virtual directory to refer to what is a virtual directory in IIS 6
and an application in IIS 7.

Deploying the HP TRIM Web Service manually

1 If this is a second Web service installation for the purpose of connecting to a different HP
TRIM database than the original Web service, then create a copy of the Web service
installation folder (e.g. C:\Program Files\Hewlett-Packard\HP TRIM\TRIMWS to
C:\Program Files\Hewlett-Packard\HP TRIM\TRIMWS-MyDbId

2 Start IIS Manager

3 Create a new virtual directory (application in IIS 7)

4 Give it an alias

5 Enter the location where the HP TRIM Web Service is installed in the path – see step 1

6 In IIS 6, ensure that the virtual directory has the permissions Read and Run Scripts
(such as ASP)

7 Set up authentication so that Anonymous access is unavailable and Windows
Authentication is selected.

Note

We recommend that you do not enable anonymous access to the HP TRIM
Web Service, as this would leave the toolkit unable to determine which
user is connecting to HP TRIM. Effectively, all connections will appear to
HP TRIM to be coming from the user configured in this section, if it is
enabled.

Web Service Reference Manual

Page 18 of 81

We recommend that under Authenticated access, you select:

— Integrated Windows authentication

— Basic authentication (password is sent in clear text)

For more information, contact an IIS administration specialist.

Folder access

Grant the user group Write access permission to the folders:

 C:\HPTRIM\WebServerWorkPath

 C:\Windows\Temp

Web Service Reference Manual

Page 19 of 81

The configuration file

The configuration for the HP TRIM Web Service is stored in the file web.config in the HP
TRIM Web Service directory.

There is a lot of configuration information in this file related to the ASP.NET v2 runtime
environment and outside the scope of this document; but there are some values which are
relevant to a deployment of the HP TRIM Web Service.

Here is an example of the relevant section of the configuration file:

<appSettings>
<add key="dbid" value="IT" />
<add key="transferTempPath" value="%SYSTEMP%" />
<add key="traceMode" value="true" />
<add key="readOnly" value="false" />
<add key="logName" value="" />

</appSettings>

The applications setting tag is where the configuration for the HP TRIM Web Service resides.
The keys are described in the following table:

Key Meaning Comments

dbid The HP TRIM dataset to
connect to

transferTempPath The location to store temporary
files in

The special %SYSTEMP%
resolves to the Microsoft
Windows temporary
directory.

Every HP TRIM user
using the Web Service
needs write access to
%SYSTEMP%.

They also need access
when you have changed
this key value as the Web
Service continues to use
%SYSTEMP% for some
operations.

%SYSTEMP% is a
Windows mapping to the
system temporary folder,
usually
C:\Windows\Temp, a
folder on the server that
the Web Service is
installed on.

Web Service Reference Manual

Page 20 of 81

traceMode Turn on the active logging
mode

This mode logs all events
to occur in the toolkit,
even if they are not errors.
It helps HP Software
support staff determine
what is occurring in the
toolkit for field support,
but writes large amounts
of information to the
Windows Event Log.

logName The name of the Windows
event log to write to

An empty string means to
use the default HP TRIM
Web Service log source
created by the .msi
installation file. Another
common option is
Application, which writes
to the Windows
application event log
source.

readOnly If true, no updates can occur This will force an error to
be returned if the caller
attempts to update any
information in HP TRIM
through this instance of
the HP TRIM Web Service

Conclusion

In this chapter, we have discussed how to install the HP TRIM Web Service as well as the
various configuration options.

Web Service Reference Manual

Page 21 of 81

3 Developing

Getting started

1 The first thing to do before beginning development against the HP TRIM Web Service is to
make sure you can access the file trim.asmx.

This can be done by pointing any Web browser at the host computer and supplying
authentication details as needed.
These details should match the LAN logon for the user configured in HP TRIM.

Once authenticated, you should see a page like this:

It is worth mentioning that you do not have to develop on the computer that is running the
HP TRIM Web Service. The server computer may be on the other side of the room, across
the world or exist only as a virtual machine.

IDEs

For this guide, we are presuming that you are programming in Microsoft Visual Studio .NET.
To describe its objects, the HP TRIM Web Service uses the Web Services Description
Language (WSDL).

Plenty of other development IDEs support WSDL and will assist the developer in writing code,
but will interpret WSDL differently.

This could mean that your client side objects may behave a little differently than described
here. If you are having real trouble, contact the API support team at HP Software –
trimsdk@hp.com
See Contacting Support.

mailto:trimsdk@hp.com

Web Service Reference Manual

Page 22 of 81

To develop against the HP TRIM Web Service in Visual Studio, you need to install:

 .NET runtime version 1.1

 Web Service Extensions 3.0 (this is installed by the HP TRIM Web Service installer)

If you are not using Visual Studio, you will need the equivalents for your chosen IDE.

When using Java for development, it is recommended you use JAX-WS.

Creating a reference to the HP TRIM Web Service

1 From the Project menu, select Add Web Reference.
The Add Web Reference dialog appears.

2 URL - type the URL of your configured Web service, click the arrow button.
It is likely that a logon dialog prompts you for your user name and password.

Web Service Reference Manual

Page 23 of 81

Once you have been authenticated, the HP TRIM Web Service appears.

Note the word Engine here – the main object in the HP TRIM Web Service, which we will
discuss more soon.

3 For now, click the Add Reference button to get Visual Studio to read the WSDL and
create objects on your computer to help call the HP TRIM Web Service.

4 Developers should name of the Web reference something more meaningful than 'localhost'
as above.

Web Service Reference Manual

Page 24 of 81

4 Basic searching

Introduction

Search is the most fundamental operation that any HP TRIM API can provide.

Due to the request/response nature of the HP TRIM Web Service architecture, every call to the
Web Service is stateless. This means the HP TRIM Web Service will never remember what a
client application was looking at previously. Almost any tasks done using the HP TRIM Web
Service will, by necessity, require a search operation.

The RecordSearch operation

The RecordSearch operation exposes the HP TRIM record searching model. HP TRIM has a
powerful and flexible model for searching for records, and in the HP TRIM Web Service, this is
represented as a RecordSearch operation. The RecordSearch operation has no methods itself,
just a collection of items that represent the search clauses.

You can have as many RecordClauses as you want

To conduct a search, the process is to:

1 Create a RecordSearch operation

2 Create one or more RecordSearch clauses

3 Append those clauses to the RecordSearch object

4 Once that has been completed, append the search to the TrimRequest

5 Use the engine object to execute that request

RecordSearch

RecordClause

Items

Web Service Reference Manual

Page 25 of 81

About clauses

When you view the object browser in your IDE, you can see that the vast majority of objects
created for the HP TRIM Web Service are RecordSearchClause objects.
These represent the different kinds of search you can do, and they differ in the number and
types of parameter that they take to perform a search.
Most of these objects contain a property called “type” which allows you to further specify the
kind of search you want to do.
A typical example, one using text search:

RecordStringSearchClause clause = new RecordStringSearchClause();
clause.Type = RecordStringSearchClauseType.TitleWord;
clause.Arg = "reef";

The “type” of property on RecordStringSearchClause takes a value from an enumeration of
RecordStringSearchClauseTypes.
If we look at the enumeration in the object browser, we can see:

Generally speaking, if a clause has a type property, it will correspond to an enumeration
which lists all the search clauses of that type.
There are exceptions – for instance, the RecordClassificationSearchClause does not have a
type. Instead, it has a ClassificationUri property where you pass in the URI of the
Classification you are looking for.
This is because there is only one record clause which takes a classification URI.

Web Service Reference Manual

Page 26 of 81

Example

Here is an example of setting up a basic search operation.
As with any HP TRIM Web Service operation, the search consists of a TrimRequest object,
which has one or more operations.
The request is then passed through to the engine object, which returns a TrimResponse.

Example – Title Word search

// Construct a request object
TrimRequest request = new TrimRequest();

// Construct a RecordStringSearchClause, with type
// TitleWord, and argument "reef"
RecordStringSearchClause clause = new RecordStringSearchClause();
clause.Type = RecordStringSearchClauseType.TitleWord;
clause.Arg = "reef";

// Construct a record search, and put our search clause in it
RecordSearch search = new RecordSearch();
search.Items = new RecordClause[] { clause };
// If we had more than one clause, it would look like:
// search.Items = new RecordClause[] { clause1, clause2, clause3 }

// Put our search operation into our TrimRequest
request.Items = new Operation[] { search };

// Send it off. Whatever comes back will be in response
Engine engine = new Engine();
engine.Credentials = newSystem.Net.NetworkCredential(username,password);
TrimResponse response = engine.Execute(request);

In this example, the final line that executes the request would return two result objects – a
SuccessResult, indicating that the search completed successfully, and an EndResult.

If an operation executes successfully, the Web Service will return you a SuccessResult.
If the operation fails, the Web Service will return an ErrorResult with an error message.

There will be a SuccessResult or ErrorResult for each operation you execute.

An EndResult indicates that the Web Service has dealt with everything, and has now
forgotten about you.
There will always be a single EndResult.

Web Service Reference Manual

Page 27 of 81

Fetch

SpecificationProperty

Items

Getting results

In the previous example, we did not enquire about any of the properties of the records, the HP
TRIM Web Service conducted a search, noted the successful completion of the search, and
finished. This may seem ultra-pedantic, but the reality is that HP TRIM records can contain
an enormous amount of data.

If you consider the relationship between records, Locations and other records, which are
properties of a single record, the possibility for HP TRIM to get locked in a recursive death-
spiral if it returned everything it knew about a record in the results is quite high.
To alleviate this, the developers have left it entirely up to you.
Additionally, only returning the data that you need is the most effective way of using network
resources.

The Fetch operation

The Fetch operation is the way of telling the HP TRIM Web Service what information to
return to the client application.
It is a comprehensive series of properties that can be used to obtain any information stored in
HP TRIM about a record.

You can have as many SpecificationProperties as you want.

The Fetch operation is essentially a container for a collection of SpecificationProperty objects –
for each piece of information you want to return from the Web Service, you need to supply a
SpecificationProperty.

The SpecificationProperty contains several properties that determine the manner in which
information is returned to you (more about those later); but probably the most important
property to set when creating a SpecificationProperty is the Name property that uniquely
identifies the value of the metadata you want to return.

Note that a Fetch is only useful when combined in a TrimRequest with a search operation.

Example 1

SpecificationProperty rectitleSpec = new SpecificationProperty();
rectitleSpec.Name = "rectitle";

Web Service Reference Manual

Page 28 of 81

This example tells the HP TRIM Web Service that we are looking for the title of the record to
be present in the result set.

To complete this, we need to append the SpecificationProperty to the Fetch operation:

Fetch fetch = new Fetch();
fetch.Items = new SpecificationProperty[] { rectitleSpec };

You can produce a sample that will return the title of each record found by combining these
code snippets with the first example by including the SpecificationProperty and adding the
Fetch operation to the TrimRequest.

Example 2

A search returning record titles

// Construct a request object
TrimRequest request = new TrimRequest();

// Construct a RecordStringSearchClause, with type
// TitleWord, and argument "reef"
RecordStringSearchClause clause =

new RecordStringSearchClause();
clause.Type = RecordStringSearchClauseType.TitleWord;
clause.Arg = "reef";

// Construct a record search, and put our search clause in it
RecordSearch search = new RecordSearch();
search.Items = new RecordClause[] { clause };

// This SpecificationProperty says we want the title
SpecificationProperty rectitleSpec = new SpecificationProperty();
rectitleSpec.Name = "rectitle";

// And this one says we want the date the record was Created
SpecificationProperty recdatecreatedSpec =

new SpecificationProperty();
recdatecreatedSpec.Name = "recdatecreated";

// Create a new Fetch Operation, and add our SpecficationProperties
Fetch fetch = new Fetch();
fetch.Items = new SpecificationProperty[] { rectitleSpec };

// Put our search operation AND our fetch operation into the
// TrimRequest
request.Items = new Operation[] { search, fetch };

// Send it off. Whatever comes back will be in response
Engine engine = new Engine();engine.Credentials = new System.Net.NetworkCredential(username,

password);
TrimResponse response = engine.Execute(request);

Information on SpecificationProperties other than recTitle can be found at the end of this
chapter.

Web Service Reference Manual

Page 29 of 81

Obtaining results using the TrimResponse

The TrimResponse object contains a loosely federated collection of results – each one relating
directly to an operation, and one that indicates the batch is complete.

For example, if your request contains two operations, you will get three results back – one for
each operation, and one to mark that processing is complete.

The best way to process results is to iterate over the items returned and inspect each one:

Example 3

Iterating through TrimResponse items

foreach (Result result in response.Items)
{

switch (result.GetType().Name.ToString())
{

case "EndResponse":
// Code to handle the EndResponse
textBox1.Text += "EndResponse!\r\n"
break;

case "SuccessResult":
// Code to handle the SuccessResult
textBox1.Text += "SuccessResult!\r\n"
break;

default:
// Code to handle whatever else, etc…
textBox1.Text += "Other Result!\r\n"
break;

}
}

If you are preparing a large and complex request, you can tag each operation with an ID,
which will be returned against the corresponding result.
The ID can be any string identifier you want. This is especially useful for an asynchronous
request, where it will tell you which request has finished

Web Service Reference Manual

Page 30 of 81

Example 4

TrimResponse items with IDs

RecordSearch search = new RecordSearch();
search.Id = "TheSearch";
search.Items = new RecordClause[] { clause };

// Additional code

foreach (Result result in response.Items)
{

switch (result.GetType().Name.ToString())
{
case "SuccessResult":

if (result.Id == "TheSearch")
{

textBox1.Text += "It was my search that worked!\r\n";
}
break;

default:
// Code to handle whatever else, etc…
textBox1.Text += "Code to handle other stuff\r\n";
break;

}
}

There are several different kinds of results, each with different behaviors.

For now, we will only concentrate on the more commonly encountered results – SuccessResult,
EndResult, FetchResult and ErrorResult.

The SuccessResult

For most operations that do not actively return information, the SuccessResult is the HP
TRIM Web Service’s way of saying that everything was performed without any errors.
The SuccessResult has no other information about an operation that completed other than the
ID that may have been assigned to the calling process.
It is generally good practice to label all your operations with IDs, and to check them when
receiving the response. This ensures that you can accurately handle results and operations.

The ErrorResult

If an operation failed, then an ErrorResult is returned in the place of a SuccessResult.
The ErrorResult object contains properties that will give a unique error code and a string
description of the error. The HP TRIM Web Service's ability to handle batch operations means
that the failure of one operation automatically results in the failure of any operation after the
failed operation in the request.

Example 5

Handling an ErrorResult

TrimResponse response = engine.Execute(request);
foreach (Result result in response.Items)

Web Service Reference Manual

Page 31 of 81

{
switch (result.GetType().Name.ToString())
{

case "Error":
ErrorResult err = (ErrorResult) result;
if (result.Id == "TheSearch")
{

textBox1.Text += "Search operation Failed\r\n";
textBox1.Text += "Error Code: " + err.ErrorNumber.ToString();
textBox1.Text += "Error Message was " + err.Message;

}
break;

default:
// Code to handle whatever else, etc…
break;

}
}

The FetchResult

The FetchResult contains all the information that has been requested about the results of a
search.

All this data can be found in the objects collection – a collection of TrimObjects which contain
information about the object returned by the HP TRIM Web Service.

It contains a collection of objects that map directly to the SpecificationProperties passed in as
part of a fetch operation.

Additionally, the FetchResult contains the count (the number of records returned by the
search) and the ResultsTruncated properties.

If your search exceeded the limit specified in the original Fetch specification, this Boolean will
be set to true and any result after the limit specified in the Fetch will be missing.

Let’s have a look at the TrimObject objects that make up the FetchResult. We can see that it is
made up of a collection of Value objects, which contain the data asked for with the
SpecificationProperties. It also contains the URI for the object in question, and information on
its version.

Each value potentially also has another value collection associated with it in the children
property. Iterating over the values collection will return to us the properties of our original
SpecificationProperty objects attached to the original Fetch object.

The EndResponse

The EndResponse is simply confirmation that the HP TRIM Web Service has finished
processing. An EndResponse will always be returned.

ListProperties

Now you know how to search for records and how to specify what it is that you want to see in
your results.

Web Service Reference Manual

Page 32 of 81

The nature of the SpecificationProperty means that you need to specify the name of the
property, but as we have previously discussed, there could be easily a thousand properties
available at any time.

Originally, there was some discussion of perhaps shipping a book with the HP TRIM Web
Service that listed all the properties, but as that was not exactly practical, there is a method
included on the engine object called ListProperties.
To use it, you pass in the name of the object you are interested in, and it returns to you a list
of all the properties available on the object.

Example 6

List Properties

textBox1.Text = "LIST PROPERTY\r\n";
textBox1.Text += "Building Engine\r\n";
Engine engine = new Engine();
engine.Credentials = new System.Net.NetworkCredential(username, password);

PropertyDescription[] descs = engine.ListProperties("classification");

foreach (PropertyDescription desc in descs)
{
textBox1.Text += desc.Name + " (" + desc.Caption + "): \r\n";
}

Note that this method is provided solely as reference material for developers. Providing a list
of all the SpecificationProperties that exist for a record is of very limited use for an end user.

Other SpecificationProperty properties

Besides the name property, the SpecificationProperty object includes two additional
properties, both of which deal with the fact that properties on HP TRIM objects can be objects
themselves.
These two properties are the Children Collection and the ForView Property. ForView relates
to a visible version of the string, instead of a parsable one (e.g. 32000 vs 32mbs).

Conclusion

A search through the Web Service consists of two components:

The Search object contains the information needed to find the object or objects in HP TRIM

The Fetch object contains one or more SpecificationProperties objects, each of which indicates
a property of the object - or objects - to be returned

After executing a search, the TrimResponse object that is returned contains one or more
Result objects:

 A SuccessResult indicates that the operation executed without errors

 An ErrorResult contains the details of why an operation failed

Web Service Reference Manual

Page 33 of 81

 A FetchResult consists of the values matching the SpecificationProperties passed in
through the Fetch object

 Finally, an EndResult indicates the last Result object

Web Service Reference Manual

Page 34 of 81

5 Primary operations

Introduction

There are several generic operations in the HP TRIM Web Service – operations that are used
the same way across different objects.

Searching is covered in depth in its own chapters, Basic Searching and Advanced Searching.

The operations covered in this chapter include preparing an object to be modified, creating a
new object and deleting an existing object.

IsForUpdate

The IsForUpdate property on searches is a way of specifying if the results of a search are to be
modified or not.

It was implemented because - as you will see later in this chapter - it is trivial to accidentally
modify or delete a large number of objects in one go.

Example 1

Setting IsForUpdate

RecordStringSearchClause rss = new RecordStringSearchClause();
rss.Arg = "Reef";
rss.Type = RecordStringSearchClauseType.TitleWord;

RecordSearch search = new RecordSearch();
search.Items = new RecordClause[] {rss};
search.IsForUpdate = true;

Whenever an object is to be altered, the IsForUpdate property on the search that locates the
object must be set to True.
If it is set to False (as it is by default), any following update or delete operation will fail.

Web Service Reference Manual

Page 35 of 81

SpecificationProperty children

Some properties on an object are objects themselves.

For example, the author of a record is actually a Location object.

A SpecificationProperty that is asked to return an object will return the URI of that object
which can then be used in other searches or in an injector – see Injection.

Sometimes, the properties of the returned object will need to be accessed directly. That is what
the idea of SpecificationProperty children is for.
Each SpecificationProperty is capable of taking a collection of SpecificationProperties.

This collection is applied to the object found by the parent property.

Example 2

Using SpecificationProperty

// Get the Location we want to look at
SpecificationProperty rectitleSpec = new SpecificationProperty();
rectitleSpec.Name = "recAuthorLoc";

// Get the property of the Location
SpecificationProperty locname = new SpecificationProperty();
locname.Name = "locSurname";

rectitleSpec.Children = new PropertyBase[] {locname};

// Create a new Fetch Operation, and add our
// SpecficationProperties
Fetch fetch = new Fetch();
fetch.Items = new SpecificationProperty[] { rectitleSpec};

// Put our search operation AND our fetch operation into the
// TrimRequest
TrimRequest req = new TrimRequest();
req.Items = new Operation[] { search,fetch };

TrimResponse resp = engine.Execute(req);

The above example will return the URI of the author Location, along with the surname of the
Location.

SpecificationProperty children can be nested – so it would be possible to find the manager of
the author in the example, and the manager’s organization, and so on.

Web Service Reference Manual

Page 36 of 81

InputProperties

InputProperties are virtually identical to SpecificationProperties, but go the other way.
While you use a SpecificationProperties to find data on an object, you use InputProperties to
manipulate or add that data.
InputProperties have the same names (and so can be found the same way) as
SpecificationProperties – using ListProperties.

Example 5

Creating an InputProperty

InputProperty title = new InputProperty();
title.Name = "recTitle";
title.Val = "New Record";

An InputProperty has a Name, which uses a SpecificationProperty name (so recTitle,
locSurname, rtyName, etc), and a Val, which is the value you are suggesting for that property.

Modifying objects

Updating properties is the simplest way to modify the metadata of a record.

You simply assign a new value of the correct data type to the named property of the object.
Field-level verification is carried out, and an error will be returned if the modification you
attempted violated some of the HP TRIM business rules.

Modifying metadata with the Update operation

The simplest way to update data in a HP TRIM record is to modify the named properties on
the object.

Obviously, you can only do so on properties that are not marked as read-only. This includes
most of the date properties, certain Location properties (AuthorLoc, AddresseLoc and
OtherLoc) and miscellaneous properties such as External ID, Priority, Accession Number and
Foreign Barcode for the record object.

Assuming the property can be updated, it is the Update object that does the work.
An Update object takes in an array of InputProperties which it will apply to the object or
objects in the search immediately preceding it.
These InputProperties are made up of two important values:

 the name of the property you are modifying – so “recTitle” or “locSurname”

 the value of the new property – so “Updated Timesheet” or “Smith”

Example 3

Updating metadata

Engine engine = new Engine();
engine.Credentials = new System.Net.NetworkCredential(username, password);

Web Service Reference Manual

Page 37 of 81

TrimRequest request = new TrimRequest();

RecordUrisSearchClause clause = new RecordUrisSearchClause();
clause.Uris = new string[] { "313" };
RecordSearch search = new RecordSearch();
search.IsForUpdate = true;
search.Items = new RecordClause[] { clause };

InputProperty rectitleInput = new InputProperty();
rectitleInput.Name = "rectitle";
rectitleInput.Val = "The New Title Is This!";

Update update = new Update();
update.Items = new InputProperty[] {rectitleInput};

request.Items = new Operation[] { search, update };

TrimResponse response = engine.Execute(request);

foreach (Result result in response.Items)
{

switch(result.GetType().Name.ToString())
{

case "FetchResult":
FetchResult fetchResult = (FetchResult) result;
foreach (TrimObject obj in fetchResult.Objects)
{

foreach (Value property in obj.Values)
{

txtOutput += "Got " + property.Name + ":";
txtOutput += property.Val;

}
}
break;

}
}

}

Web Service Reference Manual

Page 38 of 81

Will it save? Verifying records

There are two operations to assist in making sure changes are valid:

 Verify

 VerifyCreate

These work like verifying a record prior to saving it in the COM SDK.

If you make an attempt to update a record that fails, the error returned by the HP TRIM Web
Service will give details on why the operation failed – for example, a value for a required field
was not specified on a Create operation.

Additional Fields

HP TRIM allows a large number of user-defined Additional Fields to be assigned to records
and Locations.

Due to the loosely bound approach to updating properties that the HP TRIM Web Service
takes, the act of updating Additional Fields is precisely the same as for updating a native HP
TRIM metadata field:

1 Create an InputProperty

2 Assign it to the Additional Field

3 Give it the required value

If the attempt to update the field fails - for example, because the business rules limit the field
to a particular series of lookup values and the value supplied is outside of those - the HP
TRIM Web Service will return an error result for the update.

All Additional Fields are described in SpecificationProperties and InputProperties with the
prefix udf:, followed by the Additional Field title.

Example 4 – specifying an Additional Field

For example, an Additional Field Current License, the code would look like

SpecificationProperty driver = new SpecificationProperty();
driver.Name = "udf:Current License";

A list of Additional Fields is returned along with the other SpecificationProperties when the
ListProperties method is executed on an object.

Web Service Reference Manual

Page 39 of 81

Create

Being able to create new objects is vital to most HP TRIM setups.

During the development stage of the original HP TRIM Web Service, there was a Create object
for each possible object. As each object requires a different minimum set of parameters to be
created, this seemed like a good approach. However, it proved too unwieldy to implement and
did not scale well to future development.

Instead, a single Create object has been implemented to cater for all objects. This Create
operation is really just a special type of Update operation.

It is worth noting that since you are dealing with a new object, not one found through a
search, there is no IsForUpdate property to set.

Create.Items

The Create object takes an array of InputProperties.
As mentioned previously, each object has a subset of properties that must be set in order for
the Create operation to be successful.
This array of InputProperties can set every property on the object – but it must set that
minimum subset.

Example 6 – creating a Location

//Build input properties
InputProperty lastname = new InputProperty();
lastname.Name = "locsurname";
lastname.Val = "Able";

//Build the CreateLocation object
Create create = new Create();
create.TrimObjectType = "location";
create.Items = new InputProperty[] {lastname};

//Build the request
request.Items=newOperation[]{create};

Errors

If the minimum subset for the object is not specified, then the operation will fail and an
ErrorResult will be returned.
The ErrorResult will specify the property it failed on, but will only indicate one property. If
multiple properties are missing, it will only report on the first it encountered.

Web Service Reference Manual

Page 40 of 81

Example 7 – failed Create error message

Could not save changes to (empty) with identifier 0: Please enter a name for this Location.

(TRIM Web Service unique id = 1000237)

Unfortunately, there is no way of knowing for certain what properties are needed to
successfully create an object. Referring to the SDK documentation may be of assistance, but
you may need to resort to trial and error.

Delete

Using a Delete object is fairly simple – create the object and pass it along after a search. It is
important to remember that a delete is very powerful; the HP TRIM Web Service bypasses
many of the checks done in the normal HP TRIM interface. It is assumed that the developer
will implement similar safeguards to help protect users.

Example 8 – deleting a record

ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "553";
sru.IsForUpdate = true;

Delete delete = new Delete();

TrimRequest request = new TrimRequest();
request.Items = new Operation[] {sru, delete};

As mentioned previously, the Delete operation was the main reason for the implementation of
the IsForUpdate property. A Delete operation will not be successful if IsForUpdate on the
associated Search object is not set to true.

Dates

The way that dates are handled in the HP TRIM Web Service has changed for the version
released with HP TRIM 6. Dates are now formatted using the sdWebService string type from
the HP TRIM COM SDK, which produces strings in this format:

Sun, 06 Nov 1994 08:49:37 GMT

The HP TRIM Web Service will always return the time in GMT. This complies with RFC 822
(used for SMTP and HTTP). You need to use this format when you pass strings into the HP
TRIM Web Service as well. Most importantly, remember to include time zone information.

Web Service Reference Manual

Page 41 of 81

Conclusion

You should now have a good overview of the generic operations that can be performed by the
HP TRIM Web Service. These operations include creating and deleting an object, how errors
and dates are handled, and how to access Additional Fields.

Web Service Reference Manual

Page 42 of 81

6 Child Lists

Introduction

There are some objects within HP TRIM which can contain references to other objects.
For example, there can be many Locations associated with a record object. Most SDK
programmers will be familiar with the recAuthorLoc property for the Author Location for the
record. This chapter introduces the mechanism underlying this shortcut property and
documents a much more powerful method of accessing these associated objects.

Child objects

In the example above, the Locations associated with a record are called child Locations of that
record.
Each record has a list of child objects, and the Locations will be referred to by objects of type
recLocation in that list.
This is because it is possible that a single record will have more than one author.
To extract all of the authors of a record, an SDK application would iterate through the child
list, looking for objects of type recLocation which are authors.

Using the HP TRIM Web Service to access these child list items is essentially the same as
accessing any other property.

The biggest differences are:

 It is possible to have more than one property value returned for a single property request,
for example, when there is more than one author

 You need to use conditional schematics to ensure that you only update one of these child
list items at a time

Web Service Reference Manual

Page 43 of 81

Example 1 – fetching children

This code fetches a number of properties of a Location, including a child list item:

trimct.Engine engine = new trimct.Engine();
engine.Credentials = System.Net.CredentialCache.DefaultCredentials;

LocationUrisSelect lls = new LocationUrisSelect();
lls.Uris = new string[] {"1"};
lls.Limit = 1;

trimct.Fetch fth = new Fetch();
SpecificationProperty rts = new SpecificationProperty();
rts.Name = "locSurname";
SpecificationProperty rts2 = new SpecificationProperty();
rts2.Name = "locFullFormattedName";

SpecificationProperty rts3 = new SpecificationProperty();
rts3.Name = "locEmailAddress";
SpecificationProperty rts4 = new SpecificationProperty();
rts4.Name = "locGivenNames";
SpecificationProperty rts5 = new SpecificationProperty();
rts5.Name = "locGender";
SpecificationProperty rts6 = new SpecificationProperty();
rts6.Name = "locLocType";
SpecificationProperty rts7 = new SpecificationProperty();
rts7.Name = "child:locEAddress";

fth.Items = new SpecificationProperty[] {rts, rts2, rts3, rts4, rts5, rts6, rts7};

trimct.TrimRequest req = new trimct.TrimRequest();
req.HideVersionNumbers = true;
req.Items = new trimct.Operation[] {lls, fth};

textBox2.Text = engine.ConvertToXml(req);
// Execute the request

The SpecificationProperty with the name property set to child:locEAddress is a request for a
child list item. All such requests will start with a child: in much the same way that requests
for Additional Fields will start with udf: .

The return results will vary depending on how many locEAddresses exist in the child list for
this Location. Here is an example in XML form:

Web Service Reference Manual

Page 44 of 81

Example 2 – XML response to example 1

<?xml version="1.0"?>
<TrimResponse xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SearchResult>
<FoundCount>1</FoundCount>
</SearchResult>
<FetchResult ResultsTruncated="false" Count="1" TrimObjectType="location">
<Objects>
<TrimObject Uri="1" Version="2005-06-28T00:44:35+10:00">
<Values>
<Value Name="locSurname" Val="Skywalker" ErrorOccurred="false">
<Children />
</Value>
<Value Name="locFullFormattedName" Val="Luke Skywalker" ErrorOccurred="false">
<Children />
</Value>
<Value Name="locEmailAddress" Val="luke @gmail.com" ErrorOccurred="false">
<Children />
</Value>
<Value Name="locGivenNames" Val="" ErrorOccurred="false">
<Children />
</Value>
<Value Name="locGender" Val="0" ErrorOccurred="false">
<Children />
</Value>
<Value Name="locLocType" Val="4" ErrorOccurred="false">
<Children />
</Value>
<Value Name="child:locEAddress" Val="501" ErrorOccurred="false">
<Children />
</Value>
<Value Name="child:locEAddress" Val="504" ErrorOccurred="false">
<Children />
</Value>
</Values>
</TrimObject>
</Objects>
</FetchResult>
<EndResponse />
</TrimResponse>

The child list item being returned is the one with the name child:locEAddress. If there were
more than one object to return, then the name will be repeated in the list of return results.

You can of course specify the sub-properties of a child list item, just as you can for any other
property which is an object. Remember that the child list item is not the destination object
type though, it has an intermediate type.

For example, a recLocation is not a Location, but it does point to a Location with other
information as to the type of the linkage included as well.
For more information on accessing sub-properties, refer to the chapter Primary Operations
earlier in this manual.

Web Service Reference Manual

Page 45 of 81

Changing just one child list item

Now that we have found a child list item, let’s see how to change its properties. The change
itself happens just like it does in the chapter 'Basic properties', but in this case, we need to
specify which of the children to change. Otherwise, they will all be changed. This conditional
behavior didn’t exist in the first release of the HP TRIM Web Service for HP TRIM 5.2. This is
by including an additional property to the InputProperty specifying the new value – the
TargetChildUri. This value should be set to the URI of the child object to change.

Here is an example of how to do this:

Example 3 – changing a child list item

InputProperty childLocationInput = new InputProperty();
childLocationInput.Name = "rlcLocation";
childLocationInput.Val = "14";

InputProperty childRecLocationInput = new InputProperty();
childRecLocationInput.Name = "child:recLocation";
childRecLocationInput.Children = new PropertyBase[] {

childLocationInput };
childRecLocationInput.TargetChildUri = "221";

Update upd = new Update();
upd.Items = new InputProperty[] { childRecLocationInput };

req = new TrimRequest();
req.Items = newOperation[]{sru,upd};

//Execute the request

This will have the result of only changing the child list item of type recLocation, with the URI
of 221.

Web Service Reference Manual

Page 46 of 81

Creating a child list item

The HP TRIM Web Service can also create child list items. This is done with the
CreateChildItem operation, which takes a type for the child object, and a list of the input
properties to set on the new object. The way this operation is used is to create or otherwise
select the objects you want to create the child list item for, and then execute the
CreateChildItem operation.

Here is an example:

Example 4 – creating a child list item

CreateChildItem cci = new CreateChildItem();
cci.ChildObjectType = "reclocation";

trimct.InputProperty loc = new trimct.InputProperty();
loc.Name = "rlcLocation";
loc.Val = "inject:katie";

trimct.InputProperty type = new trimct.InputProperty();
type.Name = "rlcRecLocType";
type.Val = "Contact";

cci.Items = new InputProperty[] { loc, type };

// Execute the request

In this example we are creating a new contact on a record. The new contact is the Location
which was previously found using URI injection.

More information about URI injection is available in the Injection chapter in this document.

Conclusion

In this chapter we have discussed the purpose of child lists on HP TRIM objects, how to find
child list items by treating them as properties, how to change the value of a child list item by
using a conditional change, and finally how to create a new child list item.

Web Service Reference Manual

Page 47 of 81

7 Record operations

Introduction

This chapter will cover operations related to the record object in HP TRIM.
It will not cover any search objects. While there are many record-specific searches in the HP
TRIM Web Service, these are covered in The RecordSearch Operation.

AddRendition

The AddRendition operation is similar to the CheckIn object, except it is used to add
additional documents to a record. Before it can be used successfully, the new rendition
document needs to be sent to the Web Service computer using the Upload method. Like
CheckIn, AddRenditions needs the UploadId that is returned from the Upload operation (refer
to CheckIn and CheckOut for more information on Uploading documents), and has a number
of RenditionTypes that can be specified

Example 1 – adding a Rendition

//Perform an Upload, and then remember the UploadId
ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "559";
sru.IsForUpdate = true;

AddRendition ar = new AddRendition();
ar.RenditionType = RenditionTypes.Redaction;
ar.Description = "This is the redacted version";
ar.UploadId = uplid;

req.Items = new Operation[] { sru, ar };
resp = engine.Execute(req);

Web Service Reference Manual

Page 48 of 81

AppendNotes

While a record’s notes can be modified using the recNotes specification property, the
AppendNotes operation provides slightly different functionality. The idea is you do not need to
know the current value of the notes you are just appending. The AddUserStamp property adds
the user’s name and the time before the notes are appended.

Example 2 – appending notes

ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "559";
sru.IsForUpdate = true;

AppendNotes an = new AppendNotes();
an.AdditionalNotes = "I’ve made those corrections";
an.AddUserStamp = true;

TrimRequest req = new TrimRequest();
req.Items = new Operation[] {sru, an};

AttachKeyword

This allows a Thesaurus term to be applied to a record. The KeywordUri is the URI of the
Thesaurus term to be applied to the record.

Example 3 – attaching a keyword

ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "559";
sru.IsForUpdate = true;

AttachKeyword ak = new AttachKeyword();
ak.KeywordUri = "6";

TrimRequest req = new TrimRequest();
req.Items = new Operation[] {sru, ak};

Web Service Reference Manual

Page 49 of 81

CheckInMailMessage

This object expands the normal CheckIn operation, allowing additional email-related
information to be entered. The various recipients of the email can be specified through the
Recipients collection, and whether the e-mail should be left checked out or if it is a new
revision.

You can also handle any attachments associated with the mail message. These need to be
uploaded prior to the CheckInMailMessage operation (as does the mail message itself – see
CheckIn and CheckOut. Any attachments need to be handed to the CheckInMailMessage
operation as MailAttachment objects.

Example 4 – checking in mail message

MailAttachment ma = new MailAttachment();
ma.DisplayName = "comparisons.jpg";
ma.DocumentExtension = "jpg";
ma.UploadId = attachmentUplid;

MailRecipient mr = new MailRecipient();
mr.MailAddress = "name@company.com";
mr.DisplayName = "Firstname Surname";
mr.Type = MailRecipientTypes.To;

CheckInMailMessage cim = new CheckInMailMessage();
cim.UploadId = emailUplid;
cim.Attachments = new MailAttachment[] {ma};
cim.Recipients = new MailRecipient[] {mr};
cim.SentDate = "27/9/05";

ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "563";
sru.IsForUpdate = true;

CompleteCurrentAction

Include this operation in a Request to complete the current action on the associated record.

Example 5 – completing a current Action

ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "561";
sru.IsForUpdate = true;

CompleteCurrentAction cca = new CompleteCurrentAction();

TrimRequest req = newTrimRequest();
req.Items= new Operation[] {sru, cca};

Web Service Reference Manual

Page 50 of 81

CreateCopy

CreateCopy duplicates an existing record. You can specify the type of copy you are making and
make a suggestion for a new number.

Example 6 – creating a copy of an existing record

ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "559";
sru.IsForUpdate = true;

CreateCopy cc = new CreateCopy();
cc.Type = CopyType.Part;
cc.SuggestedNumber = "19/05-02";

TrimRequest req = new TrimRequest();
req.Items = new Operation[] {sru, cc};

Engine engine = new Engine();
engine.Credentials = System.Net.CredentialCache.DefaultCredentials;

TrimResponse resp = engine.Execute(req);

DeleteRendition

If you need to remove a Rendition, the DeleteRendition object is the thing to use. It is used in
conjunction with a search operation, much like the AddRendition operation mentioned earlier
in this chapter. The URI of the Rendition needs to be specified as well.

Example 7 – deleting a Rendition

ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "561";
sru.IsForUpdate = true;

DeleteRendition dr = new DeleteRendition();
dr.ChildUri = "502";

TrimRequest req = new TrimRequest();
req.Items = new Operation[] {sru, dr};
TrimResponse resp = engine.Execute(req);

Web Service Reference Manual

Page 51 of 81

Finalize

The Finalize operation is used to finalize a record. It is similar to the CompleteCurrentAction
operation in that it can be passed across without any parameters being set. It can be
considered simply a flag that can be set.

Example 8 – finalizing a record

ShortcutRecordUri sru = new ShortcutRecordUri();
sru.Uri = "561";
sru.IsForUpdate = true;

Finalize fin = new Finalize();

TrimRequest req = new TrimRequest();
req.Items = new Operation[] {sru, fin};
TrimResponse resp = engine.Execute(req);

Conclusion

In this chapter we covered the record-specific operations that are not covered in other parts of
this documentation, specifically the chapters about searching. The operations covered included
adding and removing a rendition, completing a current action and finalizing a record.

Web Service Reference Manual

Page 52 of 81

8 Non-Record Operations

Introduction

There are several operations which can be performed on objects within HP TRIM which are
not records through the HP TRIM Web Service. This chapter covers the set of those operations
which is not covered in other chapters of this manual. The operations are broken into a series
of groups, each of which is discussed in turn.

Access Control

Access Control Lists (ACLs) can also be manipulated with the HP TRIM Web Service.
For further information on how ACLs work in HP TRIM, refer to the HP TRIM SDK
documentation.

HasAccess

The HasAccess operation is used to test if a given user has access to a given object. The
operation takes the URI of the Location to check for access for (a Location often being a person
within HP TRIM), and the type of ACL to check for.
For more information on how the various ACL list types in HP TRIM interact, refer to the HP
TRIM SDK documentation for the HasAccessBase().

The HasAccessResult returns a text description of the type of access which was checked for in
a string suitable for display to your users. It also contains a list of Access Control items
describing the access.

The HasAccess operation is performed on the objects returned from the previous search.

RemoveAccess

To remove access to objects you would use the RemoveAccess operation. This operation takes
the same arguments as the HasAccess operation – an ACL type, and the URI of the Location
to operate on.

AppendAccess

To append a Location to an ACL, use the AppendAccess operation. This operation takes the
ACL type, and a list of Location URIs to append to the ACL. It then performs the ACL
manipulation without you needing to know what other items are in the ACL. This is because if
you grabbed the ACL, modified it and then handed the new ACL to the HP TRIM Web Service,
that would require at least two requests; and it is possible that someone else would have

Web Service Reference Manual

Page 53 of 81

changed the ACL while you were processing it before your second request. This would have
resulted in their changes to the ACL being overwritten by yours.

This operation returns a SuccessResult.

Deleting an object

The HP TRIM Web Service allows you to delete one object at a time with the Delete operation.
This operation operates on the result of the last search operation. As such, care should be
taken not to accidentally delete a large number of objects.

Information about the HP TRIM dataset and current connection

ConnectionInfo

The ConnectionInfo operation returns information about the HP TRIM dataset in use and the
currently connected user. The operation does not take any arguments, and returns a
ConnectionInfoResult result. This result contains the following values:

Value returned Description

CurrentUserUri The URI of the currently connected user

CurrentUserNickName The nickname of the currently connected user

CurrentUserLogin The network login for the current user

LicenseName The name of the license holder for this HP TRIM dataset

LicenseNumber The license number for this installation

IsLicensed

Similarly, the IsLicensed operation is used to test if a given piece of HP TRIM functionality is
licensed by the current HP TRIM installation. This can be used by client applications to
determine if functionality within their applications should be enabled or disabled, or if in fact
that given application will work in a given HP TRIM environment. The IsLicensed operation
takes a LicenseTypes enumeration entry as an argument, and returns a Boolean wrapped in
an IsLicensedResult if that functionality is enabled for the current HP TRIM dataset.

The LicenseTypes enumeration contains these items:

Workflow = 0,

RecordsManagement = 1,

Web Service Reference Manual

Page 54 of 81

SpaceManagement = 2,

EnterpriseCachedStore = 3,

DocumentContent = 4,

WebServer = 5,

GuestGateway = 6,

DocumentManagement = 7,

ClassifiedSecurity = 8,

CustomResourcesAvailable = 9,

AnnotateRedact = 10,

DocumentAssembly = 11,

MeetingManager = 12

UserLabels

UserLabels are a user specific grouping.

For more information on the mechanics of UserLabels, refer to the HP TRIM SDK
documentation.

ApplyUserLabel

To apply a UserLabel to a set of objects, you use the ApplyUserLabel operation. This operation
takes a UserLabel URI, and applies this UserLabel to all of the objects returned by the
previous search operation.

RemoveFromUserLabel

Similarly, to remove a UserLabel, use the RemoveFromUserLabel operation. This operation
takes the URI of a UserLabel, and removes that label from all of the objects returned by the
previous search.

Conclusion

In this chapter we have covered the operations not covered by other chapters of the
documentation. In several instances we have recommended that you refer to the HP TRIM
SDK documentation – in any case because the HP TRIM Web Service is built on top of the HP
TRIM SDK this is a good idea anyway.

Web Service Reference Manual

Page 55 of 81

9 CheckIn and CheckOut

Introduction

One of the great things about HP TRIM is that it lets you store various electronic documents.
Any record may contain your current invoice list as a Word document or photos from the last
company picnic. Documents can be checked out, modified and then checked back in while HP
TRIM keeps track of the changes.

Naturally, this ability has been included in the HP TRIM Web Service, allowing a user on the
other side of the world to download a document, modify it and then check it back in.

Web Service Enhancements 3

Web Service Enhancements, or WSE are a vital part of the file transfer and document
manipulation objects in the HP TRIM Web Service if you are using a Microsoft programming
language to call the Web Service.
It is needed to implement WS-attachments. Other language vendors will have equivalent
products. The Inline transfer method exists for developers who do not want to or cannot use
WSE.

Prerequisites

1 Before any coding can be started or any example run, make sure you have WSE 3 or
equivalent properly installed and set up.

2 WSE 3 can be downloaded from Microsoft at http://www.microsoft.com/downloads/.

3 If you install WSE 3 on a computer that you will be using to develop HP TRIM Web
Service applications with Microsoft Visual Studio, you will need to select the Visual Studio
Developer option.

4 Once installed, you need to restart Visual Studio.
The WSE 3 will now be integrated with Visual Studio and can be included in projects.

5 Once you have opened or created the solution you want to use WSE with, go to the
Solution Explorer and right-click the solution.

6 Near the bottom of the menu that appears, click WSE Settings 3.0.

http://www.microsoft.com/downloads/

Web Service Reference Manual

Page 56 of 81

The Solution Explorer dialog will appear:

7 Under the General tab, check the box Enable this project for Web Services
Enhancements.

8 Click OK and update the Web reference.

Web Service Reference Manual

Page 57 of 81

Downloading

Download is used to retrieve a specific document from the HP TRIM database and transfer it
to the client’s computer.

1 Create the Engine object

2 Once the engine has been established, it is time to create a search of some kind to find the
record with the attachment you want to download. For this example, we will just assume
we already know the URI of the record we want.

3 Once the Download object has been created, a few parameters need to be set. Checkout is
where you decide if you want to check the document out or get a local copy.

4 After the request has been built, handed over to the server and the request has been
returned, you will need to loop through the results as normal, this time paying particular
attention for the DownloadResult.

Example 1 – downloading via MTOM

// some initial variables
string fileLoc = @"c:\junk\mydocument.doc";
bool finished = false;

// here the chunk size is small to demonstrate downloading
// a document in more than one chunk. Depending on the
// network configuration the download chunk size would
// probably be big enough to download most reasonably sized
// documents in one chunk.
int DownloadChunkSize = 10000;

//Create the Engine object
Engine engine = new Engine();
engine.Credentials = CredentialCache.DefaultCredentials;

// Setup the number search
RecordStringSearchClause stringClause

= new RecordStringSearchClause();
stringClause.Type = RecordStringSearchClauseType.RecordNumber;
stringClause.Arg = "DOC1-1";

//Create the record search
RecordSearch recSearch = new RecordSearch();
recSearch.Items = new RecordClause[] { stringClause };

// The download object must be of type MTOM and specify
//a download chunk size.
Download down = new Download();
down.Checkout = false;
down.TransferType = TransferTypeType.mtom;
down.MaximumTransferBytes = DownloadChunkSize;

// Create the TRIM request
TrimRequest request = new TrimRequest();
request.Items = new Operation[] { recSearch, down };

using (FileStream fs = File.OpenWrite(fileLoc))

Web Service Reference Manual

Page 58 of 81

{
while (!finished)
{

//The TRIM request is sent repeatedly until the whole
// document has been downloaded.
TrimResponse resp = engine.Execute(request);

foreach (Result chunkRes in resp.Items)
{

switch (chunkRes.GetType().Name.ToString())
{

case "ErrorResult":
ErrorResult err1 = (ErrorResult)chunkRes;
Console.WriteLine(err1.Message);
return;

case "DownloadResult":
DownloadResult dnres

= (DownloadResult)chunkRes;
finished = dnres.FinalChunk;

fs.Write(
dnres.MTOMPayload,
0,
dnres.MTOMPayload.Length);

// setting the transfer inset tells the
// web service where in the
// file to start sending
down.TransferInset

= down.TransferInset
+ DownloadChunkSize;

// The download Id allows the web service to
// identify which download for this record
// we are referring to.
down.DownloadId = dnres.DownloadId;
break;

}
}

}
fs.Close();

}

Example 2 – downloading via Inline

// Create an Engine object
Engine exec = new Engine();
exec.Credentials = System.Net.CredentialCache.DefaultCredentials;

// Assume we know the URI of the record
ShortcutRecordUri rus = new ShortcutRecordUri();
rus.Uri = "12";

// Create the Download object
Download down = new Download();
down.Checkout = false;
down.Comments = "TRIM Web Service Example";
down.MaximumTransferBytes = 0;
down.TransferInset = 0;

Web Service Reference Manual

Page 59 of 81

down.TransferType = TransferTypeType.inline;

req.Items = new Operation[] { rus, down };
TrimResponse resp = exec.Execute(req);
byte[] data;

foreach(Result res in resp.Items)
{

if(res.GetType().Name.ToString() == "DownloadResult")
{

DownloadResult dres = (DownloadResult) res;
data = Convert.FromBase64String(dres.Base64Payload);
using(FileStream output = new FileStream(@"pic.jpg",

FileMode.Append))
{

output.Write(data, 0, data.Length);
output.Flush();
output.Close();

}
}

}

Uploading

Once you have finished with the document you just downloaded – or if you have a new
document you want to put into HP TRIM – you will need the Upload operation. Like
Download, Upload requires WSE 3 to take advantage of MTOM transfers.

Upload takes an electronic document you specify and places it on the Web Server computer.
You then attach the document to a record in HP TRIM, which moves it to the e-store. So
obviously, you need a record in HP TRIM to attach the document to.

If there is not a record for the document already in HP TRIM, you have to create it first.
Otherwise, you just need to find it, but remember to mark the record for update.

Example 2 – Upload and Checkin

Uploading a file to a TRIM server via the Web service is a two step process:

1 Upload the file

2 Check it in to a particular record.

The following class demonstrates this, first uploading the file and returning a tempory
identifier, then using that identifier to check the document into a record.

class FileManager
{

private Engine engine = new Engine();
private string upload(string fileLoc)
{

int uploadChunkSize = 10240;
int startFrom = 0;

Upload upload = new Upload();
upload.TransferType = TransferTypeType.mtom;
TrimRequest request = new TrimRequest();
request.Items = new Operation[] { upload };

Web Service Reference Manual

Page 60 of 81

using (FileStream file = File.OpenRead(fileLoc))
{

while (startFrom < file.Length)
{

if ((file.Length - startFrom) < uploadChunkSize)
{

uploadChunkSize
= Convert.ToInt32(file.Length - startFrom);

}

upload.MTOMPayload = new byte[uploadChunkSize];
file.Read(upload.MTOMPayload, 0, uploadChunkSize);
upload.BytesRead = uploadChunkSize;

TrimResponse resp = engine.Execute(request);
foreach (Result result in resp.Items)
{

switch (result.GetType().Name.ToString())
{

case "ErrorResult":
ErrorResult err1

= (ErrorResult)result;
Console.WriteLine(err1.Message);
throw new Exception(err1.Message);

case "UploadResult":
UploadResult uploadResult

= (UploadResult)result;
upload.UploadId

= uploadResult.UploadId;
startFrom += uploadChunkSize;
upload.UploadId = upload.UploadId;
break;

}
}

}

return upload.UploadId;
}

}

private void checkin(string uploadId)
{

CheckIn checkin = new CheckIn();
checkin.Comments = "test";
checkin.DocumentExtension = ".doc";
checkin.FailOnWarning = true;
checkin.KeepCheckedOut = false;
checkin.UploadId = uploadId;

// Setup the number search
RecordStringSearchClause stringClause

= new RecordStringSearchClause();
stringClause.Type

= RecordStringSearchClauseType.RecordNumber;
stringClause.Arg = "DOC1-1";

//Create the record search
RecordSearch recSearch = new RecordSearch();

Web Service Reference Manual

Page 61 of 81

recSearch.IsForUpdate = true;
recSearch.Items = new RecordClause[] { stringClause };

TrimRequest request = new TrimRequest();
request.Items = new Operation[] { recSearch, checkin };

TrimResponse response = engine.Execute(request);
foreach (Result result in response.Items)
{

switch (result.GetType().Name.ToString())
{

case "ErrorResult":
ErrorResult err1 = (ErrorResult)result;
Console.WriteLine(err1.Message);
return;

}
}

}
public void fileCheckin(string fileLoc)
{

engine.Credentials = CredentialCache.DefaultCredentials;

string uploadId = upload(fileLoc);
checkin(uploadId);

}

Conclusion

Manipulating documents through the HP TRIM Web Service requires Microsoft’s Web Server
Enhancements 3 or equivalent. Some users have encountered a problem within Visual Studio
.NET where the WSE objects are not recognized, but this can be corrected by updating the
solution’s Web Reference.

Uploading and checking in a document needs to be done in two separate executes, as the
Upload ID is needed for the CheckIn operation, but cannot be passed directly from the Upload
operation.

Web Service Reference Manual

Page 62 of 81

10 Advanced searching

Introduction

In this chapter, we are going to explore some of the more complex search options available to
the HP TRIM Web Service developer.

Record Location searches are useful when trying to locate records by Locations – such as the
author or the current Location.

This chapter will also cover building searches over several properties. These Boolean searches
could, for example, find all the records registered between two dates and which have the title
word reef in them.

Record Location searches

Searching for records by their related Locations is extremely useful for tracking the life of a
record – who first created it, who has modified it, and where the record currently is. To
address this functionality, the HP TRIM Web Service has the
RecordLocationTypeSearchClause.

Through the LocationType property, you can use the RecordLocationTypeSearchClause to find
out the current Assignee of a record, the actual Owner Location or who has the record
currently checked out.

Example 1 – searching records by Locations

RecordLocationTypeSearchClause ass = new RecordLocationTypeSearchClause();

ass.LocationUri = 17; //Peter Abbot

ass.Type = RecordLocationTypeSearchClauseType.Location;

ass.LocationType = SearchLocationTypes.Current;

Web Service Reference Manual

Page 63 of 81

Boolean searching

In earlier chapters, we looked at how to search a HP TRIM dataset for a specific criterion.
Boolean searching means searching over more than one criterion, and it is one of the more
powerful features of the Web Service.

Logical clauses

Special clauses exist to combine two or more search clauses. Collectively, these are called the
logical clauses, since each of them represents a logical separator. Logical separators are used
to combine two items. One of the really nice things about logical separators is that you can
combine two or more statements together to create some quite complex algorithms. There are
two types of logical separators available in the HP TRIM Web Service – AND clauses and OR
clauses.

For the following examples, imagine we have three records in our HP TRIM dataset - “Great
Barrier Reef” registered in 1/1/2000, “Reefs of the World” registered on 1/1/1990 and “Special
Coral” registered on 1/1/2001.

Sample records in a HP TRIM dataset

HP TRIM dataset

Title: Great Barrier Reef
Registered: 1/1/2000

Title: Reefs of the World
Registered: 1/1/1990

Title: Special Coral
Registered: 1/1/2001

Web Service Reference Manual

Page 64 of 81

AND clause

An AND clause means that an object must meet both of the search clauses to be included in
the found set.

An example of an AND search would be:

 looking for records with the title word reef AND registered between today and 1st April
1990.

Of the three records in our sample database, the search would only return the record
“Great Barrier Reef”.

AND search results

HP TRIM dataset

Title: Great Barrier Reef
Registered: 1/1/2000

Title: Reefs of the World
Registered: 1/1/1990

Title: Special Coral
Registered: 1/1/2001

TitleWord = “Reef”
AND

DateRegisteredRange =
“1/4/1990” to “25/8/2005”

Title: Great Barrier Reef
Registered: 1/1/2000

Web Service Reference Manual

Page 65 of 81

OR clause

An OR clause is used to look for objects than meet either clause.
It is worth noting that an OR clause will also return an item that meets both criteria.
An example of an OR clause would be:

 looking for all the records with the title word of “great” OR “coral”.

The search in our sample database would return two records:

OR search results

If you used the same two criteria with an AND clause, neither of the records would have been
found. Only a record with “Great” and “Coral” would be returned.

HP TRIM dataset

Web Service Reference Manual

Page 66 of 81

NOT clauses

There is a third type of logical clause we have not talked about yet.

Unlike AND and OR, the NOT clause is not a Boolean clause. Instead, think of a NOT clause
as a modifier.

It returns the items that do not contain the value specified.

In our sample dataset, while a search for records with the title word reef would return two of
three records, the same search with a NOT clause would return only one record, which is the
only one that does not contain the title word reef.

NOT search results

Boolean search format

Boolean searches in the Web Service use the reverse Polish notation. A normal equation has
the two parameters separated by an operator.
Adding together two numbers would look like this:

2 + 27

Reverse Polish works differently. Instead of parameter-operation-parameter, the reverse
Polish format is parameter – parameter – operator.
The example above would be:

2 27 +

So when applied to searches in the HP TRIM Web Service, the notation looks like this:

SearchClause1 SearchClause2 LogicalClause

Title: Great Barrier Reef
Registered: 1/1/2000

Title: Reefs of the World
Registered: 1/1/1990

Title: Special Coral
Registered: 1/1/2001

TitleWord = NOT “Reef”

Title: Special Coral
Registered: 1/1/2001

HP TRIM dataset

Web Service Reference Manual

Page 67 of 81

Building a Boolean search

You can combine any search clauses with a Boolean separator to produce a more complex
search.

So, as we said earlier, you can search by the RecordTitle and DateRegistered, or two different
surnames or any other combination of SpecificationProperties.

By this stage you should be able to construct two different searches, send off both of these
searches and get back two separate datasets. It is fairly simple to combine the two searches.

As you may have realized, the AND, OR and NOT clauses are individual clauses in the HP
TRIM Web Service. They are created in the same way as other Clause objects, except they
have no parameters that need to be set.

Example 2 – creating an ANDed search

RecordStringSearchClause titleword = new RecordStringSearchClause();
titleword.Type = RecordStringSearchClauseType.TitleWord;
titleword.Arg = "Reef";

RecordDateRangeSearchClause date = new RecordDateRangeSearchClause();
date.Type = RecordDateRangeSearchClauseType.DateRegistered;
date.StartTime = "1/4/1990";
date.EndTime = "25/1/2005";

RecordAndSearchClause and = new RecordAndSearchClause();

search.Items = new RecordClause[] {titleword, date, and};
request.Items = new Operation[] {search, fetch};

Multiple Boolean conditions

So far, we have talked about how to use the logical search clauses to search across two
parameters. But it is possible to construct even more complex search queries by using multiple
Boolean clauses.

Example 3 – multiple Boolean clauses

{titleword, date1, and, titleword, date2, and, or};

Dealing with multiple Boolean clauses can become very confusing very quickly. It may be
easier to think of the parameters in pairs.
So the example above would read as:

((titleword, date1, and), (titleword, date2, and), or)

If we translate the Polish notation into a more natural notation, we get:

((titleword and date1) or (titleword and date2))

Web Service Reference Manual

Page 68 of 81

Conclusion

While constructing Boolean searches can quickly become confusing if you are not careful, they
are a powerful part of the HP TRIM Web Service.
They allow you to either refine or expand your search conditions to cater for a much larger
group of potential searches than would be possible with individual searches.

Record Location searches allow records to be searched on by their associated Locations. This
allows electronic documents to be tracked as they pass between different individuals or to help
track down the current Location of physical records.

Web Service Reference Manual

Page 69 of 81

11 Injection

Introduction

There are potentially many situations where a developer using the HP TRIM Web Service will
need to perform some operations on an object but will not know until runtime which specific
object it is.
Based on previous chapters, the only option would be to perform two executes on the Engine –
one to identify the specific object, and a second to carry out the operations.

To cater for this situation, the concept of 'injection' was developed.
While there are several different types of injection, the basic functionality is the same: Rather
than passing a URI into a parameter, you can pass a string value that the HP TRIM Web
Service can resolve for a URI. Injection works anywhere you would use a URI.

URI injection

URI injection is used in the situations where the URI of the object is being found with some
type of search, and then passed through to the next operation. Take, as an example, dealing
with a RecordType URI when creating a new record. It is possible to do a search for the
RecordType, have its URI returned and then placed in a local variable before being passed into
the Create object and sent off in a second execute.

Using URI injection means that these two executes can be grouped together – the search is
carried out, and then the HP TRIM Web Service on the server side directly passes the result to
the Create object using a FetchInjectionUri object.

The FetchInjectionUri object works a bit differently to a normal Fetch object. Instead of
specifying what properties you want returned, you instead specify the FetchInjectionUri’s ID.
This ID can be any string, but it needs to be unique for the Execute. The FetchInjectionUri
object then caches the URI found by the search for later use in the request.

Web Service Reference Manual

Page 70 of 81

Dealing with injected URIs

By now you should be familiar with at least some of the objects in the HP TRIM Web Service
that take a URI as a parameter - for example, specifying the Record Type when creating a new
record.

For URI injection to work, you first need a successful search. We will assume for this example
that you at least know the name of the Record Type you need. So you will need a search that
can find the Record Type. As mentioned earlier, you can set the ID of the injection object to
any string, but it needs to be unique for the request.

Example 1 – creating a record using Inject

Engine engine = new Engine();
engine.Credentials = System.Net.CredentialCache.DefaultCredentials;

RecordTypeStringSelect rts = new RecordTypeStringSelect();
rts.Arg = "Document";
rts.Id = "recordtype";

InputProperty name = new InputProperty();
name.Name = "recTitle";
name.Val = "New Record";

InputProperty type = new InputProperty();
type.Name = "recRecordType";
type.Val = "inject:recordtype";

Create create = new Create();
create.Items = new InputProperty[] {type, name};
create.TrimObjectType = "record";

FetchInjectionUri fiu = new FetchInjectionUri();
fiu.Id = "recordtype";

TrimRequest req = new TrimRequest();
req.Items = new Operation[] {rts, fiu, create};
TrimResponse resp = engine.Execute(req);

The first InputProperty is pretty standard – it is just specifying the record title. The second
InputProperty is what we are really interested in.
Notice that instead of specifying the URI, we have set it to 'inject:recordtype' instead. This is
basically saying that this value will be set by the FetchInjectUri object.

As you have probably guessed, the reason the ID of the FetchInjectionUri object needs to be
unique within a single request is that otherwise the HP TRIM Web Service does not know
which URI to inject where. In fact if you reuse a FetchId, the old value will be silently
overwritten with the new one.

Web Service Reference Manual

Page 71 of 81

Things to remember

URI injection replaces the need to search for an object and return its URI before using the URI
in another request.
Naturally, this is only useful when dealing with a single URI. The operation will fail if the
FetchInjectionUri has to deal with anything but a single URI, so the search returns either
nothing or more than one URI. This prevents anything unwanted from happening if, for
example creating a new record, your search returned two Record Types.

Name

If you know the name of the object, you can use the 'name:' injector.

The 'name:' injector saves the need to do a shortcut name or similar search. When the HP
TRIM Web Service detects the 'name:' syntax, it carries out a relevant name-based search
automatically by constructing the object using its name as you would in the HP TRIM SDK.

Example 2 – creating a record using Name

Engine engine = new Engine();
engine.Credentials = System.Net.CredentialCache.DefaultCredentials;

InputProperty name = new InputProperty();
name.Name = "recTitle";
name.Val = "New Record";

InputProperty type = new InputProperty();
type.Name = "recRecordType";
type.Val = "name:document";

Create create = new Create();
create.Items = new InputProperty[] {type, name};
create.TrimObjectType = "record";

TrimRequest req = new TrimRequest();
req.Items = new Operation[] {create};

Conclusion

Injectors are designed to help minimize executes and make life easier for the developer.

There are many situations where using an injector will not be useful – or even possible. For
example, a common mistake is trying to use an injector to pass an upload ID (see CheckIn and
CheckOut) to a CheckIn object. This will not work as the upload ID does not resolve to a URI.

Web Service Reference Manual

Page 72 of 81

12 Shortcut Operations

Introduction

To make development easier, several 'shortcut' objects are included in the HP TRIM Web
Service.

These shortcuts are designed to make some of the more common tasks within HP TRIM easier
to perform, saving on the need to construct complex clauses. This means they are ideally
suited to be used in conjunction with updates, injections, deletions and similar operations.

Records

As records are really the key objects in the HP TRIM Web Service, it is natural that the
majority of the Shortcut objects are related to records.

ShortcutRecordNumber

Every record in HP TRIM has a notionally unique record number within a given Record Type.
This follows a pattern defined by the Record Type and can be manually entered by the user or
set to be automatically generated by HP TRIM. Although the commonly used term is
‘number’, it is more correctly an identifier, as it is a string that may contain alphanumeric
characters. To access this string, pass a SpecificationProperty with the name “recNumber” in
with your fetch operation.

Example 1 - ShortcutRecordNumber

// Construct a request object
TrimRequest request = new TrimRequest();

ShortcutRecordNumber recNum = new ShortcutRecordNumber();
recNum.Id = "recordNumber";
recNum.RecordNumber = "2005/0059";

// Put our shortcut operation into our TrimRequest
request.Items = new Operation[] { recNum, fetch };

Note

HP TRIM stores the record number in two formats, expanded (e.g. “2002/0059”)
and compressed (e.g. “02/59”). Both can be passed to the number property.

Web Service Reference Manual

Page 73 of 81

ShortcutRecordTitle

If you know the title of a record, then this shortcut search will be of most use.

It works like the title word search in the HP TRIM UI – it will return matches based on one or
more words, and you can incorporate wildcards.

Example 2 – ShortcutTitleNumber

// Construct a request object
TrimRequest request = new TrimRequest();

ShortcutRecordTitle recTitle = new ShortcutRecordTitle();
recTitle.Id = "recordTitle";
recTitle.TitleWord = "reef";

// Put our shortcut operation into our TrimRequest
request.Items = new Operation[] { recTitle, fetch };

ShortcutRecordUri

The Unique Row Identifier or URI of a record is an internal unique number that is
transparent to the everyday user of HP TRIM. It is the primary key on the TSRECORD table
in the database and provides an internal unique identifier for every record.

To instantiate a record by its URI, you can use the ShortcutRecordUri Operation. It works in
much the same way as ShortcutRecordNumber.

Example 3 - ShortcutRecordUri

// Construct a request object
TrimRequest request = new TrimRequest();

ShortcutRecordUri recUri = new ShortcutRecordUri();
recUri.Uri = "785";

// Put our shortcut operation into our TrimRequest
request.Items=newOperation[]{recUri,fetch};

Once an instantiated record object has been returned by the either of these shortcut methods,
the developer can access whatever properties were returned from the object.
Reading this data requires inspecting the FetchResult, as we have done in Chapter 4 -
updating these requires a new operation that we have not yet explored – the Update
operation.

Web Service Reference Manual

Page 74 of 81

ShortcutRecordUris

If you need to select multiple records, rather than use multiple instances of the
ShortcutRecordUri object, then use a ShortcutRecordUris operation. All of the records found
by this search will have the associated operations performed on them – for example a
ShortcutRecordUris search that is accompanied by an operation to change the record author to
“Joe Blogs” will alter all the matching records.

Example 4 - ShortcutRecordUris

// Construct a request object
TrimRequest request = new TrimRequest();

ShortcutRecordUris srus = new ShortcutRecordUris();
srus.Uris = new string[] {785, 786, 789};

// Put our shortcut operation into our TrimRequest
request.Items = new Operation[] { srus, fetch };

ShortcutRecordUris accepts an array of URIs, and so it is worth nothing that it can accept as
few as one URI.

ShortcutRecordDateRegistered

The final shortcut method for finding records searches the HP TRIM dataset for records that
were registered between a certain date range.

Example 5 - ShortcutDateRange

// Construct a request object
TrimRequest request = new TrimRequest();

ShortcutRecordDateRegistered srdr = new ShortcutRecordDateRegistered();
srdr.StartTime = "1/1/1990";
srdr.EndTime = "1/1/2005";

// Put our shortcut operation into our TrimRequest
request.Items = new Operation[] { srdr, fetch };

Locations

Currently there is only one Shortcut object for Locations.

Web Service Reference Manual

Page 75 of 81

ShortcutLocationName

ShortcutLocationName is a useful search for getting Locations with a specific name. It is
worth noting that when search on 'people' Locations, the Locations are searched by their
surnames – in fact, the SpecificationProperty that is searched on is named “locSurname”.

Example 6 - ShortcutLocationName

ShortcutLocationName sln = new ShortcutLocationName();
sln.Name = "smith";

TrimRequest request = new TrimRequest();
request.Items = new Operation[] {sln, fetch};

Conclusion

Shortcut operations are designed to save time for the developer by simplifying some of the
more common search operations. Combined with URI injections, Shortcuts are particularly
powerful, allowing a developer to design considerably more efficient code.

Web Service Reference Manual

Page 76 of 81

13 XML methods

Introduction

It is possible that some users of the HP TRIM Web Service will be unable to make use of the
full SOAP object functionality of the HP TRIM Web Service.
For example, you may have dropped XML data from a database and would rather use XSLT to
put it in the Web Service request.

The HP TRIM Web Service supports these users by allowing for an XML string version of the
TrimRequest object to be passed to a special method named ExecuteXml().

ExecuteXml() and ConvertToXml()

The string taken by ExecuteXml() is the XML form of the TrimRequest that was otherwise
passed and can in fact be generated by calling the ConvertToXml() method, which takes in a
TrimRequest and returns an XML string.

For example, let’s take a simple TrimRequest and convert it to XML.

Here is some code to set up a simple search:

Example 1 – converting to XML

TrimRequest req = new TrimRequest();
req.HideVersionNumbers = true;
RecordSearch recSearch = new RecordSearch();

// Now we need to make one or more search clauses for that search. We only make
// one here, as we are only going to do a title word search.
RecordStringSearchClause titleWordClause = new RecordStringSearchClause();
titleWordClause.Arg = "protective";
titleWordClause.Type = RecordStringSearchClauseType.TitleWord;

recSearch.Items = new RecordClause[] { titleWordClause };
req.Items = new Operation[] { recSearch };

Engine sdk = new Engine();
sdk.Credentials = System.Net.CredentialCache.DefaultCredentials;
m_SimpleXmlData = sdk.ConvertToXml(req);

Web Service Reference Manual

Page 77 of 81

Example 2 – XML result

<?xml version="1.0"?>
<TrimRequest xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<RecordSearch>
<IsForUpdate>false</IsForUpdate>
<Limit>0</Limit>
<Sort1>None</Sort1>
<Sort1Descending>false</Sort1Descending>
<Sort2>None</Sort2>
<Sort2Descending>false</Sort2Descending>
<Sort3>None</Sort3>
<Sort3Descending>false</Sort3Descending>
<FilterFinalizedState>Both</FilterFinalizedState>
<RecordStringSearchClause>
<Arg>protective</Arg>
<Type>TitleWord</Type>
</RecordStringSearchClause>
</RecordSearch>
<HideVersionNumbers>true</HideVersionNumbers>
<ProvideTimingResults>false</ProvideTimingResults>
<ForceRealTimeCacheUpdate>false</ForceRealTimeCacheUpdate>
</TrimRequest>

You can use this XML as the basis for a more complicated XML string if it is needed. You can
then execute this XML string like this:

Example 3 – executing XML

Engine sdk = new Engine();
sdk.Credentials = System.Net.CredentialCache.DefaultCredentials;
sdk.ExecuteXml(xmlString);

Which would be the same as executing the original TrimRequest with Execute(). You receive
the results in XML form, in this case, using my test dataset, I get:

Web Service Reference Manual

Page 78 of 81

Example 3 – XML result

<?xml version="1.0"?>
<TrimResponse xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SearchResult>
<FoundCount>2</FoundCount>
</SearchResult>
<EndResponse />
</TrimResponse>

Because there is no fetch, nothing more is returned.

Conclusion

In this chapter, we have demonstrated how to use the XML versions of the HP TRIM Web
Service Web methods.

Web Service Reference Manual

Page 79 of 81

14 Debugging and error logs

Introduction

This chapter covers what to do when things do not work out perfectly with the HP TRIM Web
Service.

We provide some ideas about where to start with debugging your applications, how to
determine if an error has occurred within the HP TRIM Web Service, and our preferred
method of reporting errors to the API Support team, who are discussed in the Contacting
Support chapter in this document.

Debugging

Debugging your use of proprietary software can sometimes be hard. HP has however put a lot
of effort into automated regression and unit testing for the HP TRIM Web Service.
It is possible that you have encountered a bug in the HP TRIM Web Service however, and we
discuss how to go about reporting those bugs if you find one.

The first step to debugging a problem with the HP TRIM Web Service is to step through your
client code and see if you can determine what the error being returned by the HP TRIM Web
Service is, if there is one. Often these error messages will say helpful things like you have to
specify a record type to create a record. If you receive an error message with such a hint, try
implementing the hint and seeing if that helps.

If you need help interpreting the hint, or a less helpful error message is returned, then contact
the API Support team as detailed in the Contacting Support chapter for assistance with
interpreting the message. All messages returned by the HP TRIM Web Service have a unique
ID associated with them, so please make a note of them.

Logging

Another useful technique to debugging what is happening in the HP TRIM Web Service is to
turn on the trace logging facility, as discussed in the Installation chapter. This will then write
messages as to the progress of your request to the configured log in the Windows Event Log
applet.

These logs can help you determine what is happening with the request, as well as providing
useful information to the API Support team.

Web Service Reference Manual

Page 80 of 81

Conclusion

In this chapter, we have discussed some introductory debugging techniques for the HP TRIM
Web Service. Contact the API Support team if you need more assistance.

A Contacting HP TRIM API Support

API Support

HP TRIM Software has a team dedicated to providing developers with assistance with the
HP TRIM SDK. Recently their role has expanded to include providing support for the Web
Service. This team may be contacted at trimsdk@hp.com and prefers questions to include
sample code, where possible.

The List Serve

HP TRIM Software also hosts an e-mail list for developers using the HP TRIM SDK or the
HP TRIM Web Service to discuss issues arising from development with HP TRIM. While HP
supports this community, we attempt to let other developers answer questions on the list
first, so that this community develops more effectively.

Contact the API Support team for more information on how to join the mailing list.

HP TRIM Helpdesk

HP Software runs a full time Helpdesk to deal with general HP TRIM questions and
problems. Unless you have a question specifically about the HP TRIM Web Service or the
SDK, the Helpdesk should be your first point of contact.
They can be contacted through your local HP TRIM office.

mailto:trimsdk@hp.com

	Legal Notices
	Documentation Updates
	Support
	Which SDK?
	Introduction
	SDK versions
	COM SDK
	.NET SDK
	Making the selection

	Conclusion

	Installation
	Introduction
	Method
	Prerequisites
	Installation process
	Manual deployment
	Folder access
	The configuration file

	Conclusion

	Developing
	Getting started
	IDEs
	Creating a reference to the HP TRIM Web Service

	Basic searching
	Introduction
	The RecordSearch operation
	About clauses
	Getting results
	The Fetch operation
	Obtaining results using the TrimResponse
	ListProperties
	Other SpecificationProperty properties

	Conclusion

	Primary operations
	Introduction
	IsForUpdate
	SpecificationProperty children
	InputProperties
	Modifying objects
	Modifying metadata with the Update operation

	Will it save? Verifying records
	Additional Fields
	Create
	Create.Items

	Errors
	Delete
	Dates
	Conclusion

	Child Lists
	Introduction
	Child objects
	Changing just one child list item
	Creating a child list item
	Conclusion

	Record operations
	Introduction
	AddRendition
	AppendNotes
	AttachKeyword
	CheckInMailMessage
	CompleteCurrentAction
	CreateCopy
	DeleteRendition
	Finalize
	Conclusion

	Non-Record Operations
	Introduction
	Access Control
	HasAccess
	RemoveAccess
	AppendAccess

	Deleting an object
	Information about the HP TRIM dataset and current connection
	ConnectionInfo
	IsLicensed
	UserLabels
	ApplyUserLabel
	RemoveFromUserLabel

	Conclusion

	CheckIn and CheckOut
	Introduction
	Web Service Enhancements 3
	Prerequisites

	Conclusion

	Advanced searching
	Introduction
	Record Location searches
	Boolean searching
	Logical clauses
	AND clause
	OR clause
	NOT clauses
	Boolean search format
	Building a Boolean search
	Multiple Boolean conditions

	Conclusion

	Injection
	Introduction
	URI injection
	Dealing with injected URIs
	Things to remember

	Name
	Conclusion

	Shortcut Operations
	Introduction
	Records
	ShortcutRecordNumber
	ShortcutRecordTitle
	ShortcutRecordUri
	ShortcutRecordUris
	ShortcutRecordDateRegistered

	Locations
	ShortcutLocationName

	Conclusion

	XML methods
	Introduction
	ExecuteXml() and ConvertToXml()
	Conclusion

	Debugging and error logs
	Introduction
	Debugging
	Logging
	Conclusion

	Contacting HP TRIM API Support
	API Support
	The List Serve
	HP TRIM Helpdesk

